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Abstract: For the UAV localization problem, GPS-IMU-based sensor fusion is widely used. In such combination, GPS
could correct IMU drift error and IMU could compensate for a low sampling rate of GPS. However, it is known that the
GPS-IMU system becomes unobservable for a certain type of maneuver, e.g. hovering as the simplest instance. This
paper presents a comparison of two variations of Kalman filter, extended Kalman filter (EKF) and unscented Kalman
filter (UKF) for unmanned aerial vehicle (UAV) localization problem in such low observability maneuver. Observability
analysis and simulation are conducted on various maneuvers including constant attitude motions and orbit motion. This
comparison could help the localization algorithm decision in the development of the UAV system.
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1. INTRODUCTION

1.1 Background and Motivation
There has been emerging interest in the usage of au-

tonomous unmanned aerial vehicles (UAVs) in the past
decade. One important component of autonomous UAV
is state estimation, which is an algorithm to provide
UAV’s current state in real-time by means of sensor fu-
sion.

While several sensing modalities can be employed for
UAV state estimation, for example, a vision [1] or a Li-
DAR [2], the most common selection for outdoor drone
flight is an IMU and a GPS. By measuring body accel-
eration and body angular velocity, the IMU provides the
vehicle’s orientation and proper body acceleration (i.e.,
gravity-compensated body acceleration). However, since
using only an IMU arises an unobservability to the posi-
tion and velocity, additional position information is mea-
sured by the GPS.

One important notice here is that some states still
might not be observable depending on the motion, even
when both IMU and GPS are employed. For instance, if
the vehicle does not experience any movement, the vehi-
cle’s gyro bias in the yaw direction becomes unobserv-
able. More generally, Hong et al., in their work in 2005
[3], showed that the component of gyro bias in the direc-
tion of the specific force is unobservable.

Meanwhile, to fuse IMU and GPS, the standard ap-
proach is to use optimal sensor fusion methods. The most
popular algorithms include extended Kalman filter (EKF)
and unscented Kalman filter (UKF). In the EKF, one lin-
earizes the given system and applies a Kalman filter, and
in the UKF, one takes sigma points and applies an un-
scented transform, then applies a Kalman filter. UKF is
known to have superior performance than EKF [4] [5].

After the proposal of UKF, its performance evaluation

compared to the EKF in GPS-IMU-based sensor fusion
has been shown by several authors [6][7]. Their consid-
eration is mainly focused on realistic flight data, where
the data has been online recorded in real-world hardware.

Such comparison might give general intuition about
the performance of each algorithm. However, due to the
cost of the experiment, it is hard to capture the boundary
case behavior of the algorithm using a real-flight dataset.
As mentioned above, there does exist a set of motions to
increase an unobservability measure of a GPS-IMU sys-
tem.

In this paper, we compare the performance gap be-
tween EKF and UKF in the above-mentioned low observ-
ability motion. Since there exist multiple types of mo-
tion to occur the unobservability, and there is no known
method to extract all such motion, we restrict our scope to
investigate the case of a special subset of motion, namely
constant attitude motion and orbit motion. The former is
important since many motions in drone flight can be ap-
proximated to it, and the latter is important because it is
used as a motion primitive in many UAV mission plan-
ners.

Since UKF requires more implementation effort than
EKF, our comparison might help the decision for the UAV
system developers, to choose the algorithm for their state
estimation module.

1.2 Contribution
Our contribution can be summarized as follows.

1. We investigate the performance gap between EKF and
UKF in the boundary case of the input motion, where the
system has an unobservable space in the state.
2. We provide an identification of an important subset of
the unobservable motion. (i.e., constant attitude motion
and orbit motion). Despite our analysis is mainly repli-
cation of the work in Hong 2005 [3] and Rhee 2004 [8],



we gave a minor extension considering the constant atti-
tude case. Also, we provide a comprehensive review of
the main points of their analysis.

2. PRELIMINARY

2.1 Extended Kalman Filter
Consider a nonlinear discrete function and discrete

measurement

xk = f(xk−1, uk−1) + wk−1 (1)
yk = h(xk) + vk (2)

xk represent the state of the system, uk denotes the
known input, and yk is the observed signal. wk and vk
are system noise and measurement noise.

In the prediction stage, we can predict the estimates
of state vector x̂ with nonlinear function f . We denote
predicted values with superscript −. P denotes state co-
variance matrix and it is predicted with linearized state
transition matrix F and system noise covariance Qk. In
this paper, the prediction stage is conducted with high-
frequency IMU data

x̂− = f(x̂k−1, uk−1) (3)

P−
k = Fk−1Pk−1F

T
k−1 +Qk (4)

Fk−1 =
∂f

∂x
|x̂k−1,uk−1

(5)

In the update stage, the filter correction is performed with
given GPS data. Kalman gain matrix Kk is obtained by
minimizing the mean square state error. The state covari-
ance matrix is updated with Kalman gain matrix Kk and
linearized measurement matrix Hk. Vk is the covariance
of measurement noise. The equations are given as follows

Hk =
∂h

∂xk
|x̂k

(6)

Kk = P−
k H

T
k (HkP

−
k H

T
k + Vk)−1 (7)

x̂k = x̂k−1 +Kk(yk − h(x̂k)) (8)

Pk = (I −KkHk)P−
k (9)

2.2 Unscented Kalman Filter
In the unscented Kalman filter, from the estimated

state vector x̂, sigma points are calculated as follows

Xk−1 = [x̂k−1 x̂k−1 +
√

(L+ λ)(Pk−1 +Qk−1)

x̂k−1 −
√

(L+ λ)(Pk−1 +Qk−1)] (10)

L is the dimension of the state variable and λ =
α2(L + κ) − L is scaling parameter. α determines the
spread of the sigma points around x̄, the average value of
sigma points, and is usually set to a small positive value
(e.g.10−3). κ is a secondary scaling parameter which is
usually set to 0.

The transformed sigma points are propagated through
the nonlinear function f . The predicted state vector x̂−k

and predicted state covariance matrix P−
k are computed

using a weighted sample mean and covariance of the pos-
terior sigma points with corresponding weights Wi. β is
used to incorporate prior knowledge of the distribution of
x. It is set as β = 2 for Gaussian distribution [4].

Xi,k = f(Xi,k−1, uk−1) (11)

x̂−k =

2L∑
i=0

W
(m)
i Xi,k (12)

P−
k =

2L∑
i=0

W
(c)
i {Xi,k − x̂−k }{Xi,k − x̂−k }

T (13)

W
(m)
0 =

λ

(L+ λ)
W

(c)
0 =

λ

(L+ λ)
+ (1− α2 + β)

(14)

W
(m)
i = W

(c)
i =

1

2(L+ λ)
i = 1, 2, . . . , 2L (15)

The predicted observation vector ŷ−k and the predicted
output covariance matrix P yy

k is calculated using nonlin-
ear observation function h.

Yi,k = h(Xi,k) (16)

ŷ−k =

2L∑
i=0

W
(m)
i Yi,k (17)

P yy
k =

2L∑
i=0

W
(c)
i {Yi,k − ŷ

−
k }{Yi,k − ŷ

−
k }

T (18)

With the innovation covariance matrix P vv
k and the cross-

correlation matrix P xy
k , the Kalman filter gainKk is com-

puted as follows

P vv
k = P yy

k +Rk (19)

P xy
k =

2L∑
i=0

W
(c)
i {Xi,k − x̂−k }{Yi,k − ŷ

−
k }

T (20)

Kk = P xy
k (P vv

k )−1 (21)

When GPS data is given, the state vector and state covari-
ance matrix are updated.

x̂k = x̂−k +Kk(yk − ŷ−k ) (22)

Pk = P−
k −KkP

vv
k KT

k (23)

3. OBSERVABILITY ANALYSIS

In this section, we provide an observability analysis of
the GPS-IMU system. We first construct a system er-
ror dynamics equation in section 3.1 and then analyze
it for the time invariant case in section 3.2. Extending
the result of 3.2, a consideration for the time variant case
will be given in section 3.3. We note that the contents of
section 3.1∼3.3 are mainly a replication of the work in
[8]. Then in section 3.4, we provide an identification of
an important subset of the unobservable motion, namely



constant attitude with linear acceleration, constant atti-
tude with quadratic acceleration, and constant speed or-
bital motion. The analysis of the observability of orbital
motion is given by [3], but we mention it here since we
think they are an important special case.

3.1 Error Dynamics

In this section, we will neglect the gravity gradient and
rotational motion of the earth. δP ,δV ,δψ,δba, and δbg in-
dicate the perturbation of position, velocity, attitude an-
gle, acceleration bias, and gyro bias. F is a specific force
acting on the system and web is an angular velocity of the
body frame. Superscript e and b indicate the earth NED
frame and body frame and CE

B is the coordinate transfor-
mation matrix from the body frame to the NED frame.
The linear perturbation equations and the measurement
equation are described as
δṖ e

δV̇ e

δψ̇e

δḃba
δḃbg

 =


0 I 0 0 0
0 0 −[CE

BF
b]× CE

B 0
0 0 −[wb

eb]
× 0 CE

B

0 0 0 0 0
0 0 0 0 0



δP e

δV e

δψe

δbba
δbbg


(24)

z =

[
I 0 0 0 0
0 I 0 0 0

]
δP e

δV e

δψe

δbba
δbbg

 (25)

Since the position error is measured directly, the observ-
ability of the system can be analyzed on the reduced sys-
tem.
δV̇ e

δψ̇e

δḃba
δḃbg

 =


0 −[CE

BF
b]× CE

B 0
0 −[wb

eb]
× 0 CE

B

0 0 0 0
0 0 0 0



δV e

δψe

δbba
δbbg

 (26)

z =
[
I 0 0 0

] 
δV e

δψe

δbba
δbbg

 (27)

3.2 Time-invariant System

A time-invariant system is when the specific force act-
ing on the system is constant and the system is not expe-
riencing rotation motion. We will use a transformed state
vector x̄ to analyze the time-invariant system.

x̄ =


δV e

δbba − [F b]×CB
E δψ

e

δbbg − [wb
eb]

×CB
E δψ

e

δψe

 (28)

With this transformed state vector x̄, system matrices

change as

Ā =


0 CE

B 0 0
0 0 −[F b]× 0
0 0 −[wb

eb]
× 0

0 0 CE
B 0

 (29)

H̄ =
[
I 0 0 0

]
(30)

We can find the zeros in the last column of Ā and H̄ .
This is the advantage we have when we use transformed
state vector x̄. We can calculate the observability matrix
as follows

O =



H̄
H̄Ā
H̄Ā2

...
H̄Āk

...
H̄Ā11


=



I 0 0 0
0 CE

B 0 0
0 0 O2,3 0
...

...
...

...
0 0 Ok,3 0
...

...
...

...
0 0 O11,3 0


(31)

where

O2,3 = −CE
B [F b]× (32)

Ok,3 = −Ok−1,3[wb
eb]

× (33)

Based on this, observability analysis of time-invariant
systems can be divided into 2 cases.

1) If F b = 0 and wb
eb = 0, system has 6 unobservable

modes. Attitude error and gyro bias are unobservable in
this condition. However, this case happens only when the
system is experiencing free-fall.

2) If F b 6= 0 and wb
eb = 0, system has 4 unob-

servable modes. An additional unobservable mode is
x̄ = [0 0F b 0]T . This means that the gyro bias in the
direction of the specific force is unobservable. An ex-
ample of this motion is constant acceleration and attitude
motion.

3.3 Time-variant System
In section 3.2, we introduced a state transformation

x = T x̄. We use the same transformation to analyze the
time-variant system. i.e.,

T =


I 0 0 0
0 0 0 I
0 I 0 Tf
0 0 0 Tw

 (34)

Tf = [F b]×CB
E Tw = −CB

E [wb
eb]

× (35)
x = T x̄ (36)

The transformed system is given as

˙̄x = T−1(AT + Ṫ )x̄ = Āx̄ (37)
z = HTx̄ = H̄x̄ (38)



Therefore,

Ā =


0 CE

B 0 0

0 0 −[F b]× Ṫf
0 0 −[wb

eb]
× Ṫw

0 0 CE
B 0

 (39)

H̄ =
[
I 0 0 0

]
(40)

Ṫf = ([Ḟ b]× − [F b]×[wb
eb]

×)CB
E (41)

Ṫw = [wb
eb]

×CB
E [wb

eb]
× (42)

Observability matrix of the transformed time-varying
system is constructed as

O(t) =



I 0 0 0
0 CE

B 0 0
0 O2,2 O2,3 O2,4

...
...

...
...

0 Ok,2 Ok,3 Ok,4

...
...

...
...

0 O11,2 O11,3 O11,4


(43)

for k = 2, 3, . . . , 11

Ok,2 =Ȯk−1,2 (44)

Ok,3 = −Ok−1,2[F b]× −Ok−1,3[wb
eb]

× (45)

+Ok−1,4C
E
B + Ȯk−1,3

Ok,4 = Ok−1,2Ṫf+Ok−1,3Ṫw + Ȯk−1,4 (46)

Since CE
B has rank 3, the observability of the system de-

pends on the rank of Osub

Osub =


O2,3 O2,4

...
...

Ok,3 Ok,4

...
...

O11,3 O11,4

 (47)

3.4 Low Observability Motion
With the observability matrix above, the number of un-

observable states in various motions can be calculated.
For instance, as shown by [3], constant speed orbital mo-
tion has three dimensional unobservable space. In this
section, we provide further identification of unobservable
motions, focusing on a constant attitude case.

Constant velocity motion and constant acceleration
motion is a typical example of the time-invariant system
with constant attitude. These systems have 4 unobserv-
able modes as shown in section 3.2. However, in the
time-varying system, which has the angular velocity or
the change of specific force, the rank of Osub should be
calculated to obtain the unobservable mode.

Using ĊE
B = 0 and wb

eb = 0 of constant attitude mo-

tion, Osub reduces as follows

O2,3 = −[F e]×CE
B (48)

O2,4 = [Ḟ e]× (49)

Ok,3 = Ok−1,4C
E
B + Ȯk−1,3 (50)

Ok,4 = Ȯk−1,4 (51)

We calculated the first three row elements for example

O2,3 = −[F e]×CE
B O2,4 = [Ḟ e]× (52)

O3,3 = 0 O3,4 = [F̈ e]× (53)

O4,3 = [F̈ e]×CE
B O4,4 = [

...
F

e
]× (54)

The number of unobservable modes in the time-variant
system is given in Table 1. The proof for the constant
attitude motion is given below.
Table 1. Examples of low observability motion in time-
varying system.

Description Unobservable
modes

(1) Linear acceleration 2

(2)
Ascending with

quadratical acceleration 2

(3) Orbit motion 3

Proof:
1) In linear acceleration,

O2,3 = −[F e]×CE
B O2,4 = [Ḟ e]× (55)

Ok,3 = 0 Ok,4 = 0 (56)

The nullspace of Osub is [F e 0] and [0 Ḟ e]. With this
nullspace, we can find that the gyro bias in the direction
of specific force and attitude error in the direction of Ḟ e

is unobservable.
2) In ascending motion with quadratic acceleration,

O2,3 = −[F e]×CE
B O2,4 = [Ḟ e]× (57)

O3,3 = 0 O3,4 = [F̈ e]× (58)

O4,3 = [F̈ e]×CE
B O4,4 = 0 (59)

Ok,3 = 0 Ok,4 = 0 (60)

However, O2,3 = −[F e]×CE
B and O4,3 = ¨[F e]×CE

B has
the same nullspace because F e and F̈ e is linearly depen-
dent. Similarly, O2,4 and O3,4 have the same nullspace.
Therefore, the rank of Osub = 4. Unobservable mode is
gyro bias and attitude error in the direction of earth grav-
ity.

For the proof of orbit motion observability analysis, refer
to [3].

4. BOUNDARY CASE PERFORMANCE
COMPARISON OF EKF AND UKF

Numerical Simulations are given in 9 conditions. Ta-
ble 3 gives the descriptions and the number of unobserv-



Table 2. Simulation results.
EKF UKF

Hor(m) Ver(m) Pos(m) Att(rad) Hor(m) Ver(m) Pos(m) Att(rad)
1 4.6919 11.3245 12.9926 0.5724 2.9943 3.7001 5.1377 0.0335
2 6.0579 11.6537 14.4214 1.0692 4.29624 3.1355 5.8471 0.0802
3 4.9017 14.4913 16.003 0.7118 2.9918 4.5183 5.8437 0.0337
4 5.5010 12.5891 14.8623 0.8666 3.7457 4.0752 6.1851 0.0988
5 5.1385 12.2204 14.0525 1.0814 3.1916 4.5457 6.0099 0.0309
6 4.8537 12.8603 14.5230 0.8986 2.8368 3.5145 4.9031 0.0457
7 5.8088 11.6579 14.1556 1.4103 4.0715 5.6063 6.8863 0.3548
8 4.8417 12.3995 14.0129 0.5492 4.0564 4.1967 6.2285 0.0338
9 5.0777 11.8818 13.6924 0.5693 3.1794 4.4784 6.0868 0.1078

Fig. 1. Simulation attitude error.

Fig. 2. Simulation position error.

able modes of the maneuvers. Maneuver (8)∼(9) are ref-
erence maneuvers in which both the acceleration and at-
titude change, therefore, do not have any unobservable
mode.

Total 30 datasets are created and saved for each ma-
neuver and the average of Mean-Square-Error is calcu-
lated. To exclude the effect of the Gaussian noise and

Table 3. Simulated motions.

Description Unobservable
modes

(1) Hovering 4

(2)
Constant-speed in xy

plane 4

(3)
Constant Acceleration in

xy plane 4

(4)
x:constant speed

y:constant acceleration 4

(5) Linear acceleration 2

(6)
Ascending with

quadratical acceleration 2

(7) Orbit motion 3

(8)

x:linearly increasing
acceleration

y:quadratically
increasing acceleration

0

(9)
Rotation in xy plane
with constant angular

acceleration
0

random walk of IMU and GPS, each EKF and UKF simu-
lations are conducted on the same dataset. In the artificial
dataset setting, GPS horizontal accuracy and vertical ac-
curacy are set to 5m and 20m each. Mean-Square-Error
of each maneuver is given in the figure. Attitude error is
the size of the rotation vector.

5. CONCLUSION

We investigated the performance difference of EKF
and UKF on GPS-IMU-based UAV localization in low-
observability motions. While UKF requires more imple-
mentation effort than EKF, UKF showed a better perfor-
mance in position and attitude estimation than EKF. Its
performance difference in attitude estimation was signif-
icant. Considering that the attitude error difference be-
tween EKF and UKF slightly dropped in the reference
observable motion (8)∼(9), this attitude estimation dif-



ference can be suspected to the result of large nonlinearity
due to gyro bias and attitude error unobservability. When
the nonlinearity of the system gets larger, the perfor-
mance gap between EKF and UKF would increase since
EKF only approximates first-order terms while UKF cap-
tures accurately to the 3rd order.

Also, it is noticeable that vertical error and attitude er-
ror of the EKF and UKF showed a large gap in the low
observability condition while horizontal error in the same
condition was in the same order. The vertical error of the
UKF was around 5m. Considering the large vertical error
of the GPS signal, it might be effective to consider the
UKF algorithm to reduce the vertical error.
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